Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
TrAC - Trends in Analytical Chemistry ; 157 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2235992

ABSTRACT

Aptamers are single-stranded DNA or RNA oligonucleotides that can selectively bind to a specific target. They are generally obtained by SELEX, but the procedure is challenging and time-consuming. Moreover, the identified aptamers tend to be insufficient in stability, specificity, and affinity. Thus, only a handful of aptamers have entered the practical use stage. Recently, computational approaches have demonstrated a significant capacity to assist in the discovery of high-performance aptamers. This review discusses the advances achieved in several aspects of computational tools in this field, as well as the new progress in machine learning and deep learning, which are used in aptamer identification and optimization. To illustrate these computationally aided processes, aptamer selections against SARS-CoV-2 are discussed in detail as a case study. We hope that this review will aid and motivate researchers to develop and utilize more computational techniques to discover ideal aptamers effectively. Copyright © 2022 Elsevier B.V.

2.
Acta Veterinaria et Zootechnica Sinica ; 54(1):281-292, 2023.
Article in Chinese | EMBASE | ID: covidwho-2234619

ABSTRACT

The aim of this paper was to prepare specific monoclonal antibody (mAb) against African swine fever virus (ASFV) p54 protein. The p54 protein was expressed in Escherichia coli expression system and used as the antigen in mAb production. The spleen cells from the immunized BALB/c mice were fused with myeloma cells SP2/0. To screen the positive hybridoma cells, the purified p54 protein was used as envelope antigen for indirect ELISA. After four times' subcloning, the supernatant of hybridoma cells were used to identify mAb subtype, ascites were prepared via in vivo induction method in mice and then the mAb was purified. The titer of the mAb was detected by indirect ELISA, and the specificity of the mAb was identified by cross reactivity assay, IFA and Western blot. According to the predicted secondary structure of p54 protein, using the stepwise truncation method identified the epitope region of mAbs, and labeled the region in tertiary structure of p54 protein. Results were as follows: six hybridoma cells secreting p54 monoclonal antibody were successfully screened and named 28G12-1, 31G7-1, 31G7-2, 35F10-1, 35F10-2, 38D3-1, respectively. The heavy chains of 28G12-1, 31G7-1, and 31G7-2 were IgG2a type, the heavy chains of 35F10-1, 35F10-2, 38D3-1 were IgG1 type, light chains were all kappa chains. The lowest titer of mAb was 1:25 600, and having no cross reaction with PRRSV, PRV, PEDV, PPV, SADS-CoV, PCV2, the specificity was strong. All six monoclonal antibodies could recognize the 127-146 aa on carboxyl end. In this study, ASFV p54 protein and p54 monoclonal antibody were successfully obtained, and the epitopes of six mAbs were identified, these experimental data laid a foundation for the functional research of p54 protein and the study of ASFV epitope vaccine. Copyright © 2023 Editorial Board, Institute of Animal Science of the Chinese Academy of Agricultural Sciences. All rights reserved.

4.
Journal of Biosciences ; 46(4), 2021.
Article in English | EMBASE | ID: covidwho-1664506

ABSTRACT

Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.

SELECTION OF CITATIONS
SEARCH DETAIL